勾股定理科幻小說簡介
⑴ 畢達哥拉斯的簡介
畢達哥拉斯(Pythagoras,572 BC?—497 BC?)古希臘數學家、哲學家。無論是解說外在物質世界,還是描寫內在精神世界,都不能沒有數學!最早悟出萬事萬物背後都有數的法則在起作用的,是生活在2500年前的畢達哥拉斯。 畢達哥拉斯出生在愛琴海中的薩摩斯島(今希臘東部小島),自幼聰明好學,曾在名師門下學習幾何學、自然科學和哲學。以後因為嚮往東方的智慧,經過萬水千山來到巴比倫、印度和埃及(有爭議),吸收了阿拉伯文明和印度文明(公元前480年)。
⑵ 與勾股定理有關的書籍
加油!!
魅力無比的定理證明
——勾股定理的證明
勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法
畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。
左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a2+b2=c2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法
直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA』』 C。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是,
S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD • BA, ①
由△CAD∽△BAC可得AC2=AD • AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。
【附錄】
一、【《周髀算經》簡介】
《周髀算經》算經十書之一。約成書於公元前二世紀,原名《周髀》,它是我國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。《周髀算經》在數學上的主要成就是介紹了勾股定理及其在測量上的應用。原書沒有對勾股定理進行證明,其證明是三國時東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的。
《周髀算經》使用了相當繁復的分數演算法和開平方法。
二、【伽菲爾德證明勾股定理的故事】
1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會神地談論著什麼,時而大聲爭論,時而小聲探討。由於好奇心驅使,伽菲爾德循聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼。只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形。於是伽菲爾德便問他們在干什麼?那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答道:「是5呀。」小男孩又問道:「如果兩條直角邊長分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不假思索地回答道:「那斜邊的平方一定等於5的平方加上7的平方。」小男孩又說:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心裡很不是滋味。
於是,伽菲爾德不再散步,立即回家,潛心探討小男孩給他出的難題。他經過反復思考與演算,終於弄清了其中的道理,並給出了簡潔的證明方法
⑶ 勾股定理的歷史
遠在公元前約三千年的古巴比倫人就知道和應用勾股定理,他們還知道許多勾股數組。美國哥倫比亞大學圖書館內收藏著一塊編號為「普林頓322」的古巴比倫泥板,上面就記載了很多勾股數。
古埃及人在建築宏偉的金字塔和測量尼羅河泛濫後的土地時,也應用過勾股定理。
公元前六世紀,希臘數學家畢達哥拉斯證明了勾股定理,因而西方人都習慣地稱這個定理為畢達哥拉斯定理。
公元前4世紀,希臘數學家歐幾里得在《幾何原本》(第Ⅰ卷,命題47)中給出一個證明。
1876年4月1日,加菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的一個證法。
1940年《畢達哥拉斯命題》出版,收集了367種不同的證法。
勾股定理的歷史意義
勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;
勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。
⑷ 勾股定律的來歷,歷史及相關資料
來歷及歷史:
1、中國,公元前十一世紀,周朝數學家商高就提出「勾三、股四、弦五」。《周髀算經》中記錄著商高同周公的一段對話。商高說:「…故折矩,勾廣三,股修四,經隅五。」意為:當直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以後人們就簡單地把這個事實說成「勾三股四弦五」,根據該典故稱勾股定理為商高定理。
公元三世紀,三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,記錄於《九章算術》中「勾股各自乘,並而開方除之,即弦」,趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。後劉徽在劉徽注中亦證明了勾股定理。
在中國清朝末年,數學家華蘅芳提出了二十多種對於勾股定理證法。
2、遠在公元前約三千年的古巴比倫人就知道和應用勾股定理,他們還知道許多勾股數組。美國哥倫比亞大學圖書館內收藏著一塊編號為「普林頓322」的古巴比倫泥板,上面就記載了很多勾股數。古埃及人在建築宏偉的金字塔和測量尼羅河泛濫後的土地時,也應用過勾股定理。
公元前六世紀,希臘數學家畢達哥拉斯證明了勾股定理,因而西方人都習慣地稱這個定理為畢達哥拉斯定理。
1876年4月1日,加菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的一個證法。
1940年《畢達哥拉斯命題》出版,收集了367種不同的證法。
二、相關資料
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
設直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那麼可以用數學語言表達:
(4)勾股定理科幻小說簡介擴展閱讀:
勾股定理存在的意義:
1、勾股定理的證明是論證幾何的發端。
2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理。
3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解。
4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理。
5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。
⑸ 勾股定理的簡介
在我國,把直角三角形的兩直角邊的平方和等於斜邊的平方這一特性叫做勾股定理或勾股弦定古埃及人利用打結作RT三角形理,又稱畢達哥拉斯定理或畢氏定理(Pythagoras Theorem)。
定理:
如果直角三角形兩直角邊分別為a,b,斜邊為c,那麼 a^2+b^2=c^2; 即直角三角形兩直角邊的平方和等於斜邊的平方。
如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是4,斜邊就是3×3+4×4=X×X,X=5。那麼這個三角形是直角三角形。(稱勾股定理的逆定理)
勾股定理的來源:
畢達哥拉斯樹畢達哥拉斯樹是一個基本的幾何定理,傳統上認為是由古希臘的畢達哥拉斯所證明。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,又給出了另外一個證明[5]。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。
【證法1】(梅文鼎證明)
做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上. 過C作AC的延長線交DF於點P.
∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一個邊長為c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一個邊長為a的正方形.
同理,HPFG是一個邊長為b的正方形.
設多邊形GHCBE的面積為S,則
,
∴ .
【證法2】(項明達證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.
過點Q作QP‖BC,交AC於點P.
過點B作BM⊥PQ,垂足為M;再過點
F作FN⊥PQ,垂足為N.
∵ ∠BCA = 90°,QP‖BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一個矩形,即∠MBC = 90°.
∵ ∠QBM + ∠MBA = ∠QBA = °,
∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可證RtΔQNF ≌ RtΔAEF.
【證法3】(趙浩傑證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形.
分別以CF,AE為邊長做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直線上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直線上,
【證法4】(歐幾里得證明)
做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結
BF、CD. 過C作CL⊥DE,
交AB於點M,交DE於點L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面積等於,
ΔGAD的面積等於矩形ADLM
的面積的一半,
∴ 矩形ADLM的面積 =.
同理可證,矩形MLEB的面積 =.
∵ 正方形ADEB的面積
= 矩形ADLM的面積 + 矩形MLEB的面積
∴ 即a的平方+b的平方=c的平方
【證法5】歐幾里得的證法
《幾何原本》中的證明
在歐幾里得的《幾何原本》一書中提出勾股定理由以下證明後可成立。 設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直於對邊上的正方形。此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。
在正式的證明中,我們需要四個輔助定理如下:
如果兩個三角形有兩組對應邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理) 三角形面積是任一同底同高之平行四邊形面積的一半。 任意一個正方形的面積等於其二邊長的乘積。 任意一個四方形的面積等於其二邊長的乘積(據輔助定理3)。 證明的概念為:把上方的兩個正方形轉換成兩個同等面積的平行四邊形,再旋轉並轉換成下方的兩個同等面積的長方形。
其證明如下:
設△ABC為一直角三角形,其直角為CAB。 其邊為BC、AB、和CA,依序繪成四方形CBDE、BAGF和ACIH。 畫出過點A之BD、CE的平行線。此線將分別與BC和DE直角相交於K、L。 分別連接CF、AD,形成兩個三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是線性對應的,同理可證B、A和H。 ∠CBD和∠FBA皆為直角,所以∠ABD等於∠FBC。 因為 AB 和 BD 分別等於 FB 和 BC,所以△ABD 必須相等於△FBC。 因為 A 與 K 和 L是線性對應的,所以四方形 BDLK 必須二倍面積於△ABD。 因為C、A和G有共同線性,所以正方形BAGF必須二倍面積於△FBC。 因此四邊形 BDLK 必須有相同的面積 BAGF = AB^2。 同理可證,四邊形 CKLE 必須有相同的面積 ACIH = AC^2。 把這兩個結果相加, AB^2+ AC^2; = BD×BK + KL×KC 由於BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由於CBDE是個正方形,因此AB^2 + AC^2= BC^2。 此證明是於歐幾里得《幾何原本》一書第1.47節所提出的
⑹ 勾股定理簡介
直角三角形中,兩條直角邊的平方和 等於斜邊的平方
⑺ 勾股定理起源
公元前11世紀,周朝數學家商高就提出「勾三、股四、弦五」。《周髀算經》中記錄著商高同周公的一段對話。商高說:「…故折矩,勾廣三,股修四,經隅五。」意為:當直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以後人們就簡單地把這個事實說成「勾三股四弦五」,根據該典故稱勾股定理為商高定理。
到公元3世紀,三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,記錄於《九章算術》中「勾股各自乘,並而開方除之,即弦」,趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。後劉徽在劉徽注中也證明了勾股定理。
西方最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。所以在西方,勾股定理稱為「畢達哥拉斯定理」。
關於勾股定理的名稱,在我國,以前叫畢達哥拉斯定理,這是隨西方數學傳入時翻譯的名稱。20世紀50年代,學術界曾展開過關於這個定理命名的討論,最後用「勾股定理」,得到教育界和學術界的普遍認同。
(7)勾股定理科幻小說簡介擴展閱讀
意義
1.勾股定理的證明是論證幾何的發端;
2.勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;
3.勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;
4.勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;
5.勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。
⑻ "勾股定理"的發展簡史
據考證,人類對這條定理的認識,少說也超過 4000 年!
中國最早的一部數學著作——《周髀算經》的第一章,就有這條定理的相關內容:周公問:「竊聞乎大夫善數也,請問古者包犧立周天歷度。夫天不可階而升,地不可得尺寸而度,請問數安從出?」商高答:「數之法出於圓方,圓出於方,方出於矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環而共盤。得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也。」就是說,矩形以其對角相折所稱的直角三角形,如果勾(短直角邊)為3,股(長直角邊)為4,那麼弦(斜邊)必定是5。從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要的數學原理了。
在西方有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
實際上,在更早期的人類活動中,人們就已經認識到這一定理的某些特例。除上述兩個例子外,據說古埃及人也曾利用「勾三股四弦五」的法則來確定直角。但是,這一傳說引起過許多數學史家的懷疑。比如說,美國的數學史家M·克萊因教授曾經指出:「我們也不知道埃及人是否認識到畢達哥拉斯定理。我們知道他們有拉繩人(測量員),但所傳他們在繩上打結,把全長分成長度為3、4、5的三段,然後用來形成直角三角形之說,則從未在任何文件上得證實。」不過,考古學家們發現了幾塊大約完成於公元前2000年左右的古巴比倫的泥板書,據專家們考證,其中一塊上面刻有如下問題:「一根長度為 30個單位的棍子直立在牆上,當其上端滑下6個單位時,請問其下端離開牆角有多遠?」這是一個三邊為為3:4:5三角形的特殊例子;專家們還發現,在另一塊泥板上面刻著一個奇特的數表,表中共刻有四列十五行數字,這是一個勾股數表:最右邊一列為從1到15的序號,而左邊三列則分別是股、勾、弦的數值,一共記載著15組勾股數。這說明,勾股定理實際上早已進入了人類知識的寶庫。
勾股定理是幾何學中的明珠,它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家、畫家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單又實用,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。(※關於勾股定理的詳細證明,由於證明過程較為繁雜,不予收錄。)
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。
⑼ 求勾股定理的歷史、冷知識等的資料
勾股定理的發展歷史
中國:
公元前十一世紀,周朝數學家商高就提出「勾三、股四、弦五」。《周髀算經》中記錄著商高同周公的一段對話。商高說:「…故折矩,勾廣三,股修四,經隅五。」意為:當直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以後人們就簡單地把這個事實說成「勾三股四弦五」,根據該典故稱勾股定理為商高定理。
公元三世紀,三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,記錄於《九章算術》中「勾股各自乘,並而開方除之,即弦」,趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。後劉徽在劉徽注中亦證明了勾股定理。
在中國清朝末年,數學家華蘅芳提出了二十多種對於勾股定理證法。
外國:
在公元前約三千年的古巴比倫人就知道和應用勾股定理,還知道許多勾股數組。美國哥倫比亞大學圖書館內收藏著一塊編號為「普林頓322」的古巴比倫泥板,上面就記載了很多勾股數。古埃及人在建築宏偉的金字塔和測量尼羅河泛濫後的土地時,也應用過勾股定理。
公元前六世紀,希臘數學家畢達哥拉斯證明了勾股定理,因而西方人都習慣地稱這個定理為畢達哥拉斯定理。
公元前4世紀,希臘數學家歐幾里得在《幾何原本》(第Ⅰ卷,命題47)中給出一個證明。
1876年4月1日,加菲爾德在《新英格蘭教育日誌》上發表了對勾股定理的一個證法。
1940年《畢達哥拉斯命題》出版,收集了367種不同的證法。
冷知識
1、希帕索斯利用勾股定理發現了第一個無理數,導致第一次數學危機。
2、華羅庚建議向外太空發射有關勾股定理的圖案。
3、2002年國際數學家大會會標為「弦圖」。
⑽ 關於勾股定理的小故事
一天,畢達哥拉斯學派的成員們剛開完一個學術討論會,正坐著遊船出來領略山水風光,以驅散一天的疲勞。這天,風和日麗,海風輕輕的吹,盪起層層波浪,大家心裡很高興。一個滿臉鬍子的學者看著遼闊的海面興奮地說:「畢達哥拉斯先生的理論一點都不錯。你們看這海浪一層一層,波峰浪谷,就好像奇數、偶數相間一樣。世界就是數字的秩序。」「是的,是的。」這時一個正在搖槳的大個子插進來說:「就說這小船和大海吧。用小船去量海水,肯定能得出一個精確的數字。一切事物之間都是可以用數字互相表示的。」
「我看不一定。」這時船尾的一個學者突然提問了,他沉靜地說:「要是量到最後,不是整數呢?」
「那就是小數。」「要是小數既除不盡,又不能循環呢?」
「不可能,世界上的一切東西,都可以相互用數字直接准確地表達出來。」
這時,那個學者以一種不想再爭辯的口氣冷靜地說:「並不是世界上一切事物都可以用我們現在知道的數來互相表示,就以畢達哥拉斯先生研究最多的直角三角形來說吧,假如是等腰直角三角形,你就無法用一個直角邊准確地量出斜邊來。」
這個提問的學者叫希帕索斯(Hippasus),他在畢達哥拉斯學派中是一個聰明、好學、有獨立思考能力的青年數學家。今天要不是因為爭論,還不想發表自己這個新見解呢。那個搖槳的大個子一聽這話就停下手來大叫著:「不可能,先生的理論置之四海皆準。」希帕索斯眨了眨聰明的大眼,伸出兩手,用兩個虎口比成一個等腰直角三角形說:
「如果直邊是3,斜邊是幾?」
「4。」
「再准確些?」
「4.2。」
「再准確些?」
「4.24。」
「再准確些呢?」
大個子的臉漲得緋紅,一時答不上來。希帕索斯說:「你就再往後數上10位、20位也不能算是最精確的。我演算了很多次,任何等腰直角三角形的一邊與斜邊,都不能用一個精確的數字表示出來。」這話像一聲晴天霹靂,全船立即響起一陣怒吼:「你敢違背畢達哥拉斯先生的理論,敢破壞我們學派的信條!敢不相信數字就是世界!」希帕索斯這時十分冷靜,他說:「我這是個新的發現,就是畢達哥拉斯先生在世也會獎賞我的。你們可以隨時去驗證。」可是人們不聽他的解釋,憤怒地喊著:「叛逆!先生的不肖門徒。」「打死他!批死他!」大鬍子沖上來,當胸給了他一拳。希帕索斯抗議著:「你們無視科學,你們竟這樣無理!」「你所說的不過是一派胡言而已。」這時大個子也沖了過來,猛地將他抱起:「就讓我們給你一個最高的獎賞吧!」說著就把希帕索斯扔進了海里。藍色的海水很快淹沒了他的軀體,他再也沒有出來。這時,天空飄過幾朵白雲,海面掠過幾只水鳥,一場風波過後,這地中海海濱又顯得那樣寧靜了。
這倒真使人們看清了希帕索斯的思想價值。這次事件後,畢達哥拉斯學派的成員們確實發現不但等腰直角三角形的直角邊無法去量准斜邊,而且圓的直徑也無法去量盡圓周,那個數字是3.14159265……更是永遠也無法精確。慢慢地,他們感覺後悔了,後悔殺死希帕索斯的無理行動。他們漸漸明白了,明白了直覺並不是絕對可靠的,有的東西必須靠科學的證明;他們明白了,過去他們所認識的數字「0」,自然數等有理數之外,還有一些無限的不能循環的小數,這確實是一種新發現的數——應該叫它「無理數」。這個名字反映了數學的本來面貌,但也真實的記錄了畢達哥拉斯學派中學閥的蠻橫無理。