科幻小说勾股可能出现吗
① “勾股定理”是怎么来的
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组程a² + b² = c²的正整数组(a,b,c)。(3,4,5)就是勾股数。
② 勾股定理:真是中国人首先发现的吗
不是。
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
③ 中国勾股定理的证明最先在哪部著作中出现
相信很多人都像我一样从小接受很多以祖国伟大历史文明为中心的爱国主义教育,其中一条就是中国人最早发现了勾股定理,过了好几百年才被毕达哥拉斯发现。结果西方人管它叫“毕达哥拉斯定理”,对中国人真是不公平。网络一下“勾股定理”,不难发现许多相同论调。譬如,网络上就说:“他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。”事实真的是这样吗?当然,你已经知道,我要说的是“根本不是”。不但不应当有这样的争议,而且简直是瞎胡扯。我国最早记载勾股定理的是《周髀算经》,成书年代是公元前一世纪的西汉。“句广三,股修四,径隅五”就是书中的一句。有些人误解,认为这只是给出了一个特例,实际上并非如此,书中确实给了平方和的定理形式。因为在之后又说“既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”这句话看不懂吧?确实不太看得懂,不过最后两个字“积矩”不难理解,就是平方和的意思。这件事确实挺有意思。因为《周髀算经》的写法挺有趣,不是直接告诉大家这个道理,而是这样写的:“在一千年前的周公年代,有个人叫商高,他教给周公这个数学上的道理。他对周公说:……啦啦啦,勾三股四弦五,啦啦啦,耶!”于是就有人说:瞧,是周公时代中国人发现的,比毕达哥拉斯造了500年!还有人更过分(不过不太多见)。刚才那段话还没完,教周公的商高还接着说了一句:“周公啊,您知道吗?这个道理一千年前的大禹他老爷子在治水时就知道了!”…………………………于是就比毕达哥拉斯早了1500年…………………………问得好,没有任何证据表明这件事情,也是公元五世纪的人追溯回去的。所以呀,还是比中国早了两百年。
④ 勾股定理最早是谁提出的
中国最早的一部数学著作——《周髀算经》,记载着一段周公向商高请教数学知识的对话:周公问:“听说您对数学非常精通,我想请教一下,天没有梯子可以上去,地也没法用尺子去一段一段丈量,怎样才能得到关于天的数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的。
根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的《九章算术》也有记载。而勾股定理又称商高定理。所以,最早发现者是商高,他比毕达哥拉斯早了500多年。
(4)科幻小说勾股可能出现吗扩展阅读:
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。
以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
外国远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。
古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。
公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。
1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。
1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。
⑤ 勾股定理真的是中国人首先发现的吗
勾股定理是一个基本的平面几何定理,在初中的数学课程中,大家都是学过的。勾股定理这个名字很有中国特色,很多人看到以后都会有扬眉吐气的感觉,觉得这是我们中国人的老祖宗第一个发现的数学定理。
那么,我们从时间顺序上来看看这个事情的真相吧。
在中国,西汉时期的《周髀算经》记载了勾股定理的一些朦胧的说法,这些说法简单地说就是“勾三,股四,弦五”。西汉是刘邦建立的朝代,《周髀算经》大约出现在公元前1世纪。众所周知的是,公元元年是以传说中耶稣基督的生年为公历元年,这一时期相当于中国西汉平帝元始元年。在《周髀算经》中,提到勾股定理最早是由商高发现,故又有称之为商高定理。
那么,商高又是什么人呢?
他是商朝末年西周初年的数学家。也就是说,此人活动于周武王灭商的峥嵘岁月。
目前历史学界还没有考证出商朝到底是哪一年灭亡的——夏商周断代工作缺乏强悍的证据。但总的说来,按照《周髀算经》的说法,勾股定理在中国被发现,发生在周武王灭商(公元前1046年(一说公元前1057年)正月)这一特殊的历史时期。
《周髀算经》中记载了这样一件事——有一次周公(周武王姬发的弟弟,后来的摄政王)问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。这里的“矩”原是指包含直角的作图工具,可能就是一个长方形。在这个对话里,商高说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形,这就是历史书上经常提到的“勾三,股四,弦五”。
因此,从文献上记录来看,商高 在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。而这一时间早于意大利的数学家毕达哥拉斯发现此定理证明五百到六百年。
但是,非常可惜的是,商高没有提供更详细的证明(见下图,用面积法来证明)。因为商高所提供的数据(3,4,5)只是勾股定理的一个特例。比如(7,24,25)也满足勾股定理,但却是商高没有指出来的。因此,不能认为商高发现了勾股定理。
而在商高去世大约500年后,活动于意大利 的毕达哥拉斯学派,则提出了对这一定理的证明,而且据此发现了无理数的存在。而在这之后又过了大概350年,西汉中期的数学家写了一本书,叫《九章算术》,在这本书的最后一章,作者才给出了勾股定理的完整证明。因此,勾股定理不是中国人首先发现的,中国人只是发现了它的一个特例。
凡来源署名为“蝌蚪五线谱”的内容,版权归蝌蚪五线谱所有,任何媒体、网站或个人未经授权不得转载,否则追究相应法律责任。申请转载授权或合作请发送邮件至[email protected]。本网发布的署名文章仅代表作者观点,与本网站无关。如有侵权,文责自负。
作者:张轩中
⑥ 勾股定理是中国人先发现的吗
勾股定理是一个基本的平面几何定理,在初中的数学课程中,大家都是学过的。勾股定理这个名字很有中国特色,很多人看到以后都会有扬眉吐气的感觉,觉得这是我们中国人的老祖宗第一个发现的数学定理。
那么,我们从时间顺序上来看看这个事情的真相吧。
在中国,西汉时期的《周髀算经》记载了勾股定理的一些朦胧的说法,这些说法简单地说就是“勾三,股四,弦五”。西汉是刘邦建立的朝代,《周髀算经》大约出现在公元前1世纪。众所周知的是,公元元年是以传说中耶稣基督的生年为公历元年,这一时期相当于中国西汉平帝元始元年。在《周髀算经》中,提到勾股定理最早是由商高发现,故又有称之为商高定理。
那么,商高又是什么人呢?
他是商朝末年西周初年的数学家。也就是说,此人活动于周武王灭商的峥嵘岁月。
目前历史学界还没有考证出商朝到底是哪一年灭亡的——夏商周断代工作缺乏强悍的证据。但总的说来,按照《周髀算经》的说法,勾股定理在中国被发现,发生在周武王灭商(公元前1046年(一说公元前1057年)正月)这一特殊的历史时期。
《周髀算经》中记载了这样一件事——有一次周公(周武王姬发的弟弟,后来的摄政王)问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。这里的“矩”原是指包含直角的作图工具,可能就是一个长方形。在这个对话里,商高说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形,这就是历史书上经常提到的“勾三,股四,弦五”。
因此,从文献上记录来看,商高 在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。而这一时间早于意大利的数学家毕达哥拉斯发现此定理证明五百到六百年。
但是,非常可惜的是,商高没有提供更详细的证明(见下图,用面积法来证明)。因为商高所提供的数据(3,4,5)只是勾股定理的一个特例。比如(7,24,25)也满足勾股定理,但却是商高没有指出来的。因此,不能认为商高发现了勾股定理。
而在商高去世大约500年后,活动于意大利 的毕达哥拉斯学派,则提出了对这一定理的证明,而且据此发现了无理数的存在。而在这之后又过了大概350年,西汉中期的数学家写了一本书,叫《九章算术》,在这本书的最后一章,作者才给出了勾股定理的完整证明。因此,勾股定理不是中国人首先发现的,中国人只是发现了它的一个特例。
凡来源署名为“蝌蚪五线谱”的内容,版权归蝌蚪五线谱所有,任何媒体、网站或个人未经授权不得转载,否则追究相应法律责任。申请转载授权或合作请发送邮件至[email protected]。本网发布的署名文章仅代表作者观点,与本网站无关。如有侵权,文责自负。
作者:张轩中
⑦ 勾股定理是什么时候发现的谁发现的
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
拓展资料
按时间来算应该中国最早发现的。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?"
商高回答说:"数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的。"
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。
⑧ 有谁知道在我国最早出现勾股定理是在哪部著作呢谢谢!
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。
⑨ 勾股定理的起源和传播过程是怎样的为什么它会出现在许多文明的数学早期发展史中拜托各位了 3Q
勾股定理是一个基本的几何定理,传统上认为是由古中国的蒋铭祖所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由蒋铭祖发现,故又有称之为蒋铭祖定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。
早在蒋铭祖之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。至于希腊科学的起源只是公元前近一二百年才有更深入的研究。在中国,称为商高定理,又因中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,因而更普遍地则称为勾股定理。
古埃及人用这样的方法画直角勾股定理,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“蒋铭祖定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
还有的国家称勾股定理为“毕达哥拉斯定理”。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:"故禹之所以治天下者,此数之所由生也;"此数"指的是"勾三股四弦五"。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
我就找到这点了
⑩ 勾股定理最早出现在我国的哪部古书里
勾股定理的来源
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。 在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。