当前位置:首页 » 玄幻小说 » 改变勾股定理的科幻小说

改变勾股定理的科幻小说

发布时间: 2021-06-22 20:48:30

Ⅰ 勾股定理

魅力无比的定理证明
——勾股定理的证明

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

Ⅱ 勾股定理微白茫小说,可以发一下链接吗,谢谢

Ⅲ 勾股定理小论文范文

1)实例一

勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).

在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
据考证,人类对这条定理的认识,少说也超过 4000 年!

中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。

在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。

勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

2)实例二

关于勾股定理
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.
证明方法:
先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2
勾股定理的历史:
商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期
西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四
,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径
隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理.
关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾
三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.
赵爽:
•东汉末至三国时代吴国人
•为《周髀算经》作注,并著有《勾股圆方图说》.
赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒
等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的
独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明
勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中
体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正
是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系
与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思
想与方法在几百年停顿后的重现与继续."
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段
一段丈量,那么怎样才能得到关于天地得到数据呢?"
商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩'
得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。

Ⅳ 勾股定理起源

公元前11世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

到公元3世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中也证明了勾股定理。

西方最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。所以在西方,勾股定理称为“毕达哥拉斯定理”。

关于勾股定理的名称,在我国,以前叫毕达哥拉斯定理,这是随西方数学传入时翻译的名称。20世纪50年代,学术界曾展开过关于这个定理命名的讨论,最后用“勾股定理”,得到教育界和学术界的普遍认同。

(4)改变勾股定理的科幻小说扩展阅读

意义

1.勾股定理的证明是论证几何的发端;

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

Ⅳ 你见过最能扯的小说有哪些

她睡着了,男主温柔的盯着她的眼睛,那双眼眸里仿佛有璀璨星辰;
男主的继母放了一个尖酸刻薄的屁;
女主吞吞吐吐地走到离男主三米之外的地方,男主或许是嫌太慢了,于是长臂一伸,将女主捞进怀里;
男主正在一个1000楼的办公楼顶层处理着事务,突然管家坐着直升机上来对男主说:“总裁该吃饭了”
他的眼里透着三分宠溺三分爱意和四分的无可奈何
……真能扯的哈哈哈

Ⅵ 求物理,数学类科学名著书目

最佳当然首推《从一到无穷大》了,这本书在科普界的地位,无人能动摇。内容包罗万象,数学,物理,化学,生物都有涉及,而且不仅仅是简单的知识介绍,站在很高的角度看问题,却又深入浅出,提升你的境界。

《天才引导的历程 》
讲数学的,讲了十几位著名数学家的故事,以及他们的发现。非常经典,既有有趣的故事,又能学到很多数学知识。比如阿基米德是如何求圆的面积的,欧几里得是怎样证勾股定理的,康托尔的对角线法是怎么回事。 非常经典。
网上可以找到

《从惊讶到思考-数学悖论奇景》
关于数学悖论的非常有趣的书,作者是大名鼎鼎的马丁.加德纳, 图文并茂。 三思科学网站有电子版。

物理世界奇遇, 也很经典

魔鬼出没的世界,作者 卡尔.萨根, 经典

科学的历程,北大出的,相当不错,
作者 吴国盛,嘿嘿,当年的传奇人物啊
本书是一部以宽广的人文视角审视科学发展历程史佳作。它通过对科学家生平及科学发现过程生动而激情的叙述,对人类每一次重大的科学技术进步在人类文明发展链条上的意义和价值的精当评述以及对人类在认识大自然的过程中,自身宇宙观、世界观的不断深化的阐扬,同时,借助大量精美、精彩的图片,气势恢宏又通俗生动地描画出五千年人类文明史科学发展的历程。

《量子物理史话》
国人写的一本关于量子力学的科普书,讲述了量子力学发展过程中那些激动人心的事件。作者是一位不愿透露身份的神秘人物。刚开始只是作为连载,发在论坛上,没想到引起了轰动, 现已出版。 网上随处可见。 内容非常丰富, 尤其值得一提的是,最后几章由量子力学引发的对宇宙的思考, 一定会让你对这个世界有全新的认识

《费马大定理》
数学上最具有传奇色彩的定理,与之有关的种种故事。以讲故事为主,几乎涵盖了整个数学史。尤其值得一提的是,里面用通俗的语言介绍了一些最新最现代的数学知识。引人入胜。

《数学大师-从芝诺到庞加莱》
关于历史上有名的数学家的传记,堪称同类中最经典的。商务印书馆80年代出版的时候叫《数学精英》,现在改名叫《数学大师》,出版社换成了上海科技教育出版社。 台湾的一个网站上有部分章节的电子版(大概有2/3吧,手工输入的,功德无量啊),网站名字叫阿仁的数学之家。

==================
我以前写的一篇科普书籍介绍:
《天才引导的历程 》
讲数学的,讲了十几位著名数学家的故事,以及他们的发现。非常经典,既有有趣的故事,又能学到很多数学知识。比如阿基米德是如何求圆的面积的,欧几里得是怎样证勾股定理的。 非常经典。
网上可以找到

《费马大定理》
数学上最具有传奇色彩的定理,与之有关的种种故事。以讲故事为主,几乎涵盖了整个数学史。尤其值得一提的是,里面用通俗的语言介绍了一些最新最现代的数学知识。引人入胜。

《量子物理史话》
国人写的一本关于量子力学的科普书,讲述了量子力学发展过程中那些激动人心的事件。作者是一位不愿透露身份的神秘人物。刚开始只是作为连载,发在论坛上,没想到引起了轰动, 现已出版。 网上随处可见。 内容非常丰富, 尤其值得一提的是,最后几章由量子力学引发的对宇宙的思考, 一定会让你对这个世界有全新的认识。

《从一到无穷大》
科普书里面的至尊宝典,地位无须多说。

《从惊讶到思考-数学悖论奇景》
关于数学悖论的非常有趣的书,作者是大名鼎鼎的马丁.加德纳, 图文并茂。 三思科学网站有电子版。

《数学大师-从芝诺到庞加莱》
关于历史上有名的数学家的传记,堪称同类中最经典的。商务印书馆80年代出版的时候叫《数学精英》,现在改名叫《数学大师》,出版社换成了上海科技教育出版社。 台湾的一个网站上有部分章节的电子版(大概有2/3吧,手工输入的,功德无量啊),网站名字叫阿仁的数学之家。

第一推动丛书,有很多本, 不过可能不是太好懂

万物简史,新浪上有连载,比较有意思

通俗数学丛书,一套,十几本吧,包括数学游戏与欣赏、数学趣闻集锦、数学与联想、20世纪数学的五大指导理论等

物理世界奇遇, 也很经典

魔鬼出没的世界,作者 卡尔.萨根, 经典

暂时介绍这么多,其中大部分都可以在网上找到
------------
补充

谐趣科学:哈佛学府的另类风格
稀奇古怪、不可思议,但是这一切却是真的——《谐趣科学》就是这么一本能给您带来快乐的书,它将带领您以戏谑的眼光去看等世界上最异想天开的科学研究。
介绍了哈佛大学举办的“搞笑诺贝尔奖”的历届获奖内容。你在阅读本书的过程中,可以发现“脚爪感应”是一个计算机软件程序的名称,只要你的计算机安装了这个程序,家里养的猫爬上你的键盘,计算机就能够立刻通知你。你还可以遇到在研究“墨菲法则”方面取得突破性进展的幕后男士,他找到了可以证明“烤面包片时常倒向抹有黄油的一边”的确凿证据。此外,你还可以了解到你所想了解的许多奥秘,比如“英国格拉斯哥的盥室的倒塌“和”浸泡饼干的最理想方式“。

科学的历程,北大出的,相当不错,
作者 吴国盛,嘿嘿,当年的传奇人物啊
本书是一部以宽广的人文视角审视科学发展历程史佳作。它通过对科学家生平及科学发现过程生动而激情的叙述,对人类每一次重大的科学技术进步在人类文明发展链条上的意义和价值的精当评述以及对人类在认识大自然的过程中,自身宇宙观、世界观的不断深化的阐扬,同时,借助大量精美、精彩的图片,气势恢宏又通俗生动地描画出五千年人类文明史科学发展的历程。

《动物有意识吗?》
北京理工大学翻译出版的,内容很有意思,不知道翻译的如何

《圆的历史:数学推理与物理宇宙》
以近乎小说的可读性生动地描述了有关圆的历史、文化、技术应用和科学研究。 也是北京理工出的,跟上面的是“盗火者丛书”一套里面的

《火星的故事》,也是
《自然规律--中蕴蓄的统一性》,还是。
本书作者以古希腊学者开篇,一路介绍了迄今为止物理学中一应重要概念的形成与发展过程。全书文字明快、知识性强,却只涉及到极有限的数学内容,为具有一定数学与物理学基本知识的读者,提供了引人入胜的识见,。。。

孟德尔妖--基因的公正与生命的复杂,也是
这是一部人们真正期待已久的书……这部书的成功不仅在于书中的故事本身非常有趣,而且因为里德利知道该如何讲透这个故事,还因为他的讲述的确实很出色…

声明一下,上面几本我没有看过,不知道翻译质量如何

熵-一种新的方法论
把物理学上熵的概念引入社会学的研究中,似乎不错

----------
再补充
《自私的基因》,经典之作,70年代出版之后备受争议,但是十几年后作者的观点成为了主流,并改写了进化论的基础。经典中的经典,不可不读。

《裸猿》,以动物学家的角度看待人类,帮助你认清人类自己,有许多观点令人惊讶,但是却让人无法回避。畅销全球数十年,经典之作。

《魔鬼经济学》,经济学类的通俗读物,一本不可思忆的书,让你常常有恍然大悟的感觉:原来是这样的。经济学读物算不算科普呢?暂且算吧。

《基因组-人种自传23章》非常棒的一本书,内容非常充实,让人大开眼界。

《囚徒的困境 冯·诺伊曼、博弈论和原子弹之谜》 (美) 威廉姆·庞德斯通著,这本书既讲数学,又讲历史和政治,用数学来分析政治。博弈论是什么?没听说过?这可是炙手可热的一个数学分支,已经成为经济学,进化论,社会学的基础了。《自私的基因》就是完全用博弈论把进化论重写了一遍。

《超越时空--通过平行宇宙、时间卷曲和第十维度的科学之旅》,这本书我刚读完,是一本能够让人想入非非的书,非常通俗易懂。作者还在书中介绍了大量的科幻小说来解释物理学原理,想当有趣。比如那个著名的“一九四五年的一天,克力富兰的孤儿院里出现了一个神秘的女婴.....”

其他的等我想起来再补充吧。我介绍的书许多在网上有电子版,可以省掉不少买书钱。

Ⅶ 1876年,美国总统加菲尔德,利用右图证明了勾股定理,你能利用它证明勾股定理吗怎么证明的

在直角梯形ABDE中,∠AEC=∠CDB=90°,△AEC≌△CDB,

(7)改变勾股定理的科幻小说扩展阅读

《九章算术》中,赵爽描述此图:“勾股各自乘,并之为玄实。开方除之,即玄。案玄图有可以勾股相乘为朱实二,倍之为朱实四。以勾股之差自相乘为中黄实。加差实亦成玄实。以差实减玄实,半其余。以差为从法,开方除之,复得勾矣。加差于勾即股。

凡并勾股之实,即成玄实。或矩于内,或方于外。形诡而量均,体殊而数齐。勾实之矩以股玄差为广,股玄并为袤。而股实方其里。减矩勾之实于玄实,开其余即股。倍股在两边为从法,开矩勾之角即股玄差。加股为玄。以差除勾实得股玄并。

以并除勾实亦得股玄差。令并自乘与勾实为实。倍并为法。所得亦玄。勾实减并自乘,如法为股。股实之矩以勾玄差为广,勾玄并为袤。而勾实方其里,减矩股之实于玄实,开其余即勾。倍勾在两边为从法,开矩股之角,即勾玄差。加勾为玄。以差除股实得勾玄并。

以并除股实亦得勾玄差。令并自乘与股实为实。倍并为法。所得亦玄。股实减并自乘如法为勾,两差相乘倍而开之,所得以股玄差增之为勾。以勾玄差增之为股。两差增之为玄。倍玄实列勾股差实,见并实者,以图考之,倍玄实满外大方而多黄实。

黄实之多,即勾股差实。以差实减之,开其余,得外大方。大方之面,即勾股并也。令并自乘,倍玄实乃减之,开其余,得中黄方。

黄方之面,即勾股差。以差减并而半之为勾。加差于并而半之为股。其倍玄为广袤合。令勾股见者自乘为其实。四实以减之,开其余,所得为差。以差减合半其余为广。减广于玄即所求也。”

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

1.勾股定理的证明是论证几何的发端;

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; [1]

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

参考资料

勾股定理_网络

热点内容
高糖校园甜宠小说青梅竹马 发布:2025-08-15 11:07:45 浏览:310
丧病大学全文免费阅读镇魂小说网 发布:2025-08-15 09:25:10 浏览:35
排行古言小说全文免费阅读 发布:2025-08-15 07:49:30 浏览:901
我的老千生涯免费有声小说1 发布:2025-08-15 07:13:26 浏览:17
小说女主角叫乔乔的免费阅读 发布:2025-08-15 06:59:56 浏览:521
全册免费阅读小说软件 发布:2025-08-15 06:42:15 浏览:958
一品江山小说全文免费阅读 发布:2025-08-15 06:02:50 浏览:140
跟宠物有关的小说言情 发布:2025-08-15 05:53:00 浏览:525
免费阅读凌风李诗云小说 发布:2025-08-15 05:23:30 浏览:902
2017起点好看小说 发布:2025-08-15 05:05:53 浏览:153